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Abstract-With increasing complexity. structures that are optimally designed subject to an eigenvalue
constraint (buckling load. fundamental frequency. etc.) are likely to display multiple coincident eigenvalues.
For example. optimal statically determinate and simply indeterminate columns buckle into a single mode.
whereas fixed-fixed columns may exhibit a dual buckling inode. This phenomenon has been observed first
by Olholt' and Rasmussen[ll.

Even if the optimal design is in the interior of the admissible d~sign space. multiple eigenvalue solutions
are not stationary but singular. The nature of the singularity is the main topic of this investigation.
Necessary and sufticient conditions for local and global optimality are explored and explicit optimality
criteria are established for a double mode solution. In that case the space of all admissible design changes is
split into a two-dimensional subspace in which the dual eigenvalues separate. and a complementary
subspace in which they remain coincident. It is within this latter subspace that sequential approximations
must take place.

The criteria developed here are applied first to a two-degree-of·freedom system. In addition. an exact
analytical solution is established for the fixed-fixed column problem. The accuracy of the numerical
solution of this problem in [II had been challenged but is now confirmed.

The paper ends with a discussion of the ring buckling problem. The prismatic design is shown to be
optimal without being stationary; however. unlike the cases discussed previously the optimal eigenvalue for
the ring corresponds to a continuous spectrum of buckling modes.

I. INTRODUCTION

The issue of multiple eigenvalue constraints in connection with structural optimality has arisen
only recently[l], yet it is rapidly developing into one of substantial concern. It is of major
potential technical significance, as has been pointed out in {2] and as was further underlined by
the number of formal presentations (e.g. [3-5]) and informal discussions at the NATO-NSF
Advanced Study Institute on Optimization of Distributed Parameter Structures held in Iowa
City in the spring of 1980. The issue came up again in general form at the 15th Int. IUTAM
Congo in Toronto in 1980[6], while related specific (and greatly simplified) problems have been
discussed in [7] and elsewhere. In spite of these contributions a full understanding of the
general nature of the effect of multiple eigenvalues in optimality theory, especially in relation to
questions of necessity and sufficiency, appears to be lacking. The current study is therefore
intended to help clarify some of the uncertainties that still remain.

Current concern with multiple eigenvalues is due to a discovery of Olhoff and Rasmussen,
who considered the "best" design of a column under axial compression and with complete fixity
at both ends. This problem had previously been considered by Tadjbaksh and Keller{8], who
employed the calculus of variations and thereby obtained an "optimal" design which exhibits
hinges at the quarter points and a symmetric buckling mode.

In their paper{l] Olhoff and Rasmussen noted that for a column so designed the actual
buckling mode is antisymmetric and corresponds to an axial force which is much smaller than
the one found in [8] (and is, in fact, much smaller than the smallest buckling load of a column of
the same volume and constant cross-section). Moreover, they found that no other solution is
satisfactory if it is based on the conventional calculus of variations approach as applied to an
eigenvalue constraint. From this they drew the remarkably perceptive conclusion that the
correct optimal solution is based on a double eigenvalue, and they in fact derived conditions of
optimality and found a numerical solution to the problem. Note that the solution found by
Olhoff and Rassmusen[1] exhibits no hinges.

The optimality conditions established in {t] were also derived through the use of the
calculus of variations, but with the additional side condition of a dual eigenvalue. Questions
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regarding the validity of this derivation have been raised [9] on the basis that coincident multiple
eigenvalues are not Frechet-differentiable; moreover, since only first variations are involved in
[1] the issue of the sufficiency of the results is still left open.

To place the matter in perspective we now restate and reformulate the single eigenvalue
optimality problem in the Introduction (Section 1). An extension to multiple eigenvalues is then
carried out in Section 2, and specific necessary and sufficient conditions for double eigenvalues,
including a geometric interpretation, are derived in Section 3. Section 4 contains numerical and
analytical solutions of some sample problems.

Let us start by considering the typical example of a conservative linear buckling problem,
which is governed by the quadratic form

(1)

in which Q2 and W2 are quadratic in the displacement vector function u(x), with x E T. The.
design is identified by H(x), and the buckling load parameter by A. The form Q2 represents the
strain energy density and is positive definite. If, as is assumed here, W2 is also positive definite
in u, then all eigenvalues are non-negative, and each eigenmode Uj (i = 1, 2, ... ) is associated

. with an eigenvalue Aj such that

i =1,2, ... (2)

for all kinematically admissible displacement functions v. We note, because of its paramount
relevance to the topic of this paper, that although all modes Uj are distinct, the same may not be
true of the associated eigenvalues Ai'

Since P II , QII and WII are bilinear in Uj and v, eqn (2) represents a linear eigenvalue
problem. If all admissible function u(x) are normalized in the sense of

(3)

then, for single eigenvalues Ai' the corresponding eigenmodes Ui are uniquely determined
(except for the sign). It may be noted that in certain types of eigenvalue problems, such as
those dealing with vibrations, critical shaft speeds, etc. W2 may also be a function of the design
variable H. No essential difficulty is encountered in extending the results of this study to such
problems.

The optimal design problem now consists in either finding a structure of minimum volume
for given lowest eigenvalue constraint, or else to prescribe the volume and to design the
structure so as to make the smallest eigenvalue as large as possible. The two problems can
easily be shown to be equivalent. The second approach is adopted here, for convenience, although
Olhoff and Taylor [10] have recently found it useful to employ the first approach in connection with
optimal remodeling of structures under eigenvalue constraints.

If the modes Uj and associated eigenvalues Ai are assumed to be Frechet-differentiable [9] in
the neighbourhood of a given design, with derivatives identified by superimposed dots (as in Ii;),
then differentiation of eqn (2) leads to

(4)
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In view of eqn (2) the I.h.s. of eqn (4) represents a singular operator in U;, and the in­
homogeneous eqn (4) therefore has no solution unless its right side satisfies a certain ortho­
gonality condition. The latter is obtained by subtracting eqn (4), with v =U;, from eqn (2), in
which we substitute Ui for v. With eqn (3) this leads to the familiar relationship

Aj = 1. Wj Hdx, (5a)

where

- OQ2(U' R) (5b)wi=oR j,

has been shown previously[ll) to represent the surface strain energy density in the critical
"design fibers", i.e. in those fibers whose identity is affected by the choice of the value of the
design variable R. For example, in a beam of depth R the critical design fibers are at the top
and bottom of the beam.

Let the smallest eigenvalue be single, i.e. let

(6)

then optimality requires, as a necessary condition, that

(7)

for all changes H which leave the volume V unchanged. Without significant loss of generality
we may select R such that the condition of constant volume is represented by

v== 1. H dx = O. (8)

If H is unconstrained, or, equivalently, if the admissibility of any H(x) implies also the
admissibility of - H(x), then the inequality in eqn (7) has to be ruled out since AI is linear in H.
In view of eqns (5), and by introducing, in the usual manner, a Lagrangian multiplier to account
for the restriction of eqn (8) we arrive at

(9)t

as a necessary and sufficient condition for satisfying eqn (7) and hence as a necessary condition
for local optimality.

The establishment of general global sufficiency conditions poses far greater problems, and
no universal sufficiency conditions of technical usefulness appear to have been found thus far.
However, a special case, but one of fairly broad technical importance, is listed in what follows.

Suppose we define a "stable" open domain D.[H.(x), A.) in the H, Aspace in the sense that

P:z(U;H.;,)..)- 1. Q2(U;H.)dx-A. 1. W:z(U)dx>O (10)

for all kinematically admissible functions U. The domain D. is bounded by the surface
S.[HI(x; AI), AI), on which

(11)

is satisfied. We note that eqn (11) leads to eqn (2) (with i = 1).

tLet the choice of the variable H(x) in accordance with eqn (8) be such that the volume V increases with increasing
value of H. For fixed mode Vi the strain energy density Q~ must then increase, too. and 01, is positive definite. This justifies
the use of a positive Lagrangian multiplier.
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Let US now consider a point Ps(Hs, As) in Ds, and an "unstable" point piH", A,,) which lies
"outside" of SI' For PII this implies that there exists at least one function V(x) =V,,(x), and a
parameter A", such that

(12)

If we subtract eqn (12) from eqn (10) (with V =V,,), then

(13)

As a special case let us now assume that Q2 is concave in H, that is,

(14)

for all V, H and Ho, Many structural elements violate this inequality; however, the equality sign
in eqn (14) is satisfied for the common case of a sandwich structure, which includes I-beams,
sandwich plates and shells, etc. if the contribution of the web is ignored. If now eqn (14) (with
V =V"' H =H., Ho=H,,) is substituted in eqn (13), then

(15)

Consider finally a point p*(H*, A*) which represents an extension of the line P., - p" beyond
p", i.e.

Then

H*(x) = H.(x) +~[H.(x) - H, (x)]

A'" = A" +a[A" - As]

a>O.

(16)

The inequality in this expression follows from inequality (14), and the equality is based on eqn
(16). In the final expression the first bracket is postulated to be negative (see inequality (12»,
and the second bracket is positive by inequality (15). With a >0 it follows that
P2(U,,; H"'; A"') <0, and p* is therefore also unstable. In other words, a straight line from any
point inside Ds to any point outside Sit when extended beyond the latter, cannot enter Ds again.
That is, Ds is convex, and the proof of the sufficiency of eqn (9) for global optimality is then
obvious following standard reasoning. t

tit is of some interesl to note thaI the domains. iJ). DJ, ••• bounded by higher order surfaces 51. S,•.. .(defining A:.
AJ, ...) are in general nol convex because in that case eqn (10) applies only to restricted classes of functions U. It can be
shown, however, that iJ) is star-shaped with respect to all points in D•.
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If D. is convex, then its intersection with the linear subspace

f. H(x) dx:::: V

215

(17)

(defining the volume constraint) is also convex. Because V> 0 the origin is not contained in
that subspace. However, by selecting a reference design Ho(x) (e.g. a prismatic design) and by
introducing the translation

where

H(x) =Ho(x) +hex), H(x) =hex),

LHo(x)dx:::: V

Lh(x)dx:::: 0,

(18)

(18a)

(18b)

we establish the "homogeneous stable" domain d.(h; .\.) which is convex, which contains the
origin, and whose bounding surface 5. is concave toward the origin. It is noted that, for any
arbitrary hex),

hex) =hex) - ha.craac (19)

satisfies eqn (18b).
The problem considered in [8] and again in [1] does not happen to have a concave strain

energy density in the sense of (14), and the sufficiency condition therefore does not apply.
Nevertheless this is not the reason why the results found in [8] are incorrect. In fact let us
consider the much simpler, but equally demonstrative case of a fixed-fixed sandwich column of
length I and of stiffness £1 = c2(V/l)H(~), in which c = constant, ~ = xII, and the design
variable may be normalized in the sense of

f Hd~:::: 1.

With the axial force given by N = '\c 2 VII) the potential energy becomes

(20)

which does satisfy eqn (14). The eigenvalue problem corresponding to eqn (2), with i = 1, is

(Hu'j)" + '\lu7 = 0, ~ E [0,1]

and the optimality condition eqn (9) becomes

(21)

(22)

in addition to the requirement[I2] that u~ be continuous at all hinge points (H = 0). The
corresponding simply-supported column problem was solved by Prager and Taylor[13]. There
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the optimal design is symmetric, and the cqlumn buckles into a symmetric mode of constant
curvature u'j =k, while the associated load parameter AI =12 represents an increase of slightly
more than 20% over the corresponding value of A10 = rr2 for the prismatic column of the same
volume (Ho= 1).

Similarly, the fixed-fixed column satisfying eqns (21) and (22) buckles into a symmetric
mode, with u'j = +k in the central half and u'j = - k in the outer quarters, while the symmetric
design H1W exhibits hinges at the quarter points. Once again, the buckling parameter AI = 48
contrasts with A10 =4rr2 for the prismatic case HoW = 1. In total analogy with the solution
presented in [8], however, this is not an optimal solution, and the objections raised by Olhoff
and Rasmussen in [1] apply with equal force to this case.t

This is easily visualized by considering the one-dimensional design subspace

HW = (1- a)HoW +aH,W, a E [0,1],

in which the upper limit is imposed on a to avoid negative values of H(£). The dependence of
AI on a is shown by the curve ABC in Fig. 1, with point A representing the prismatic column,
and point C the "optimal" column designed according to eqns (21) and (22). Point C also
corresponds to the solution presented in [8].

It turns out that, for increasing values of a, I.e. as increasing amounts of material are shifted
from the region around the quarter points toward the center and the ends of the column, the
resistance of the column against antisymmetric buckling is weakened. This is shown on the
curve A'BC', which represents the solution of eqn (21) for i =2. The stable domain is
represented by the area under ABC' and is in fact convex. The best design (within the subspace
considered) is at point B and corresponds to a double eigenvalue. This phenomenon of a
multiple eigenvalue solution is far from uncommon, and its likelihood increases with the
complexity of the structure [2]. It represents an issue of considerable technical significance, and
the establishment of the appropriate optimality conditions therefore occupies the remainder of
the current investigation.

2. MULTIPLE EIGENV ALUES

In what follows let us assume that the buckling condition eqn (2) is satisfied by the n-fold
eigenvalue

(23)

>.

1 ,
~ I

~ :1,'T
!.'TA I •STABLE REGION I r;;..
li(9- ---l.:_c,----.L~__ CI

I. 1,---·1
Fig. I. Buckling load parameter Avs design parameter a.

tThese objections are mitigated. but not eliminated even if certain discontinuities in the slope are admitted (14).
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in association with n linearly independent eigenfunctions Uj(x), i =1, 2, ... n. Since any linear
combination of these functions also satisfies eqn (2) it is possible, and turns out to be
convenient, to orthonormalize these functions in the sense of

(24)

Note that eqn (24) do not determine the functions Uj uniquely. In particular, if Uj satisfies eqns
(24), then any set of functions Uj defined by

(25)

also satisfies (24) if the rotation matrix is orthogonal as indicated. Moreover, the surface energy
densities

(26)

are readily seen to satisfy the transformation law

(27)

In deriving eqn (5), which identifies the "sensitivity" of the eigenvalue to design changes, no
restriction was imposed on the possible multiplicity of the eigenvalues. Equation (5) therefore
remains valid. In view of the multiplicity of the eigenfunctions Uj associated with the same
eigenvalue, however, the question arises as to which function is to be used in computing Aj•

The answer to that question depends on H, i.e. the "direction" of the design change.
Consider, once again, eqn (2), with i =I and v =Ul' and subtract eqn (4), with i =J and v =U/.

If I and J are two indices such that A/ = AJ (eqn 23), and if we introduce, for assumed H, the
definitions (after returning to lower case subscripts)

(28)

Ajj(H) = f WjiHdx,
T

then

(i = j)
(i ¢ jf

(29)

In other words, eqn (5) is valid for the case of multiple eigenvalues provided the functions Uj

have been so selected (or. the given functions Uj have been so rotated) that for assumed H(x)
the non-diagonal terms in Aii vanish.

It is important to note that whereas for given functions Uj the terms Aij are linear in H, the
same is not true of the actual eigenvalue variations Ai since the rotation matrices [RiiJ, in .order
to satisfy eqns (29), become themselves functions of H. Nevertheless we record for future
reference that

For optimality we now require, as a necessary condition, that

inf Ai ~ 0 VH E eqn (8).
i-= 1.2.... n

(30)

(31)
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Unlike in eqn (7), however, the inequality sign has to be retained in eqn (31) since, with a
replacement of il by - il, the critical index j may shift.

The implementation of eqn (31) now proceeds in two stages. We first define a subspace
il (x) = he(x) which satisfies eqn (8) and for which

(32)

In view of eqn (29) it is clear that within this subspace the matrices Ajj must be proportional to
the identity matrix, i.e.

(33)

It is also noted that i.. is linear in he. If the latter is unconstrained, then, by the same
argument as the one following eqn (7), the inequality in eqn (31) must now be ruled out. A
necessary condition for optimality within the subspace he then is given by

i..i =0, j = 1, 2, ... n

or:

and, with the introduction of Lagrangian multipliers 'Yij, eqns (34) are satisfied provided

" "L L 'Yijnjj :::; e, x E T.
i=1 j=l

(34)

(35)

Equations (35) are necessary for local optimality and represent a generalization and
extension of the conditions first introduced by Olhoff and Rasmussen [1]. A condition for global
optimality is implied by convexity of D. (see Section 1). Moreover, global optimality also
imposes restrictions on the values of the Lagrangian multipliers 'Yij' These conditions have not
been established thus far for the general case n> 1. In the following section, however, we
derive specific restrictions for the case n = 2.

3. SPECIAL CASE-DOUBLE EIGENV ALUE

For n = 2 the rotation matrix [R jj ] reduces to

R. = [ cos cP sin cP ]
['J] - sin cP cos cP

and involves only the single rotation cPo Equations (29) simplify to

(36)

(37)

If, analogously to the general case n> 1, the subspace he is defined by i.. 1= i.. 2, then, by eqn
(37), he satisfies

(38a)
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(38b)

(38c)

(38d)

(38e)

In eqns (38a), (b), and (d) fiji and Oji may be used interchangeably in view of eqns (c) and (e).
Within the subspace he, the optimality condition A. =A2 =0, subject to eqns (38), leads to

the necessary condition

(39)

in conformity with the more general case covered in eqn (35). Equation (39) differs from the one
presented in [1] through the presence of the term fi. 2• This issue is discussed later on in this
section.

Since, by eqn (38a) and (38b), he is define'!. to be a subspace which is "orthogonal" to both
(011 - 02:J and 0 12, the general expression for any permissible variation H(x) is given by

(40)

in which a, and a2 are constants and in which

(41)

M2 =~U. (O~:J <Ix)
...

and in which further, by eqns (38),

(42)

In other words, the general variation Ii is a linear combination of the two functions hI and 1i2,

each of unit norm, along which the eigenvalues separate, plus a complementary function hr

which is orthogonal to both h. and h2 and along which the dual eigenvalue retains its duality.
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It is convenient to select U,(x) and Uk,) in such a way that h, and 112 are themselves
mutually orthogonal in the sense that

(43)

It is shown in the Appendix that this is always possible. If H as defined in eqns (40)-(42) is now
substituted in eqn (37), then, in view of eqn (43),

and therefore

(44)

where

and in which M, and M2 are defined in eqns (41).
Optimality requires that

(45)

Equation (45) implies that A. I and A.2 must not both be positive. Since, by eqn (30), the signs of
both are reversed with the reversal of the sign of H it follows for the unconstrained case that a
negative value for both A, and A2 is also ruled out. Then eqn (45) is equivalent to [2]

(45a)

As pointed out before, within the subspace H(x) =I1r (x) (i.e. for al =a2 =0) eqn (45) or
(45a) implies AI = A2 = 0, or eqn (39), as a necessary condition of optimality. With the last term
on the r.h.s. of eqn (44) thus eliminated the latter is reduced to

(46)

The strict inequality in eqn (45) (or eqn 45a) is satisfied if

IAla, +A2a21 < y'(M,2aI2+M/al} Va" a2
+
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(47)

We note that the first inequality in (47) is already implied by the second.
A relationship between "the constants Ai> Mi and the constants 'Yij appearing in eqn (39) is

obtained by multiplying the latter by, respectively, (011 - O:zz> and Oil and by integrating over
the domain. With eqn (43) and some straightforward algebra this leads to

A2 = -2 'Y12
M2 'YII + 'Y22

and the optimality condition eqn (47) reduces to

(49)

Since the r.h.s. of eqn (39) has been postulated to be positive it will now be shown that 111
and 'Y22 must also be positive. It is obvious from (49) that they cannot be of opposite sign; it
therefore suffices to show they cannot both be negative.

In a previous footnote it is observed that w (or fi) is a positive definite quadratic form of its
argument; hence

These inequalities, in conjunction with (49), imply

Now let 'Yll = - 'YII > 0, 'Y22 = - 'Y22 >0; then the above inequality, when inserted into eqn (39),
leads to the contradiction

and

(SO)

is therefore a necessary consequence.t
By setting

(51)

Equation (39) simplifies to

(52)

tEquations (49) and (SO) suggest that the positive definiteness of ["Yij] may be required for optimality even for n > 2; our
proof. however, is confined to n = 2.
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(53)

and the optimality conditions eqns (49) and (50) take the simp,le form

(54)

which imply 0< 'Y < I, -! < f3 <!.
It is noted that the strict inequality in eqn (54) assures local optimality in the hl .h2 subspace

for which the two eigenvalues separate. A sufficiency condition for gl~bal optimality is obtained
by adjoining the condition of convexity as discussed in Section I (see also [6]). It is also noted
that the orthogonality condition eqn (43) was introduced only for computational convenience
and is not necessary for the validity of either eqn (49) or (54), although, of course. it is essential
if the computable constants Ai and Mi are to be used as well as for a geometric interpretation
of these results (to be introduced at the end of this section).

In 0], as indicated before. the mixed term in eqn (52) is missing. Naturally, this may happen
in specific cases, and can in any event be made to happen through the proper rotation of the
modes Uj(x). In fact, with U* = [R]U, the constants 'Yii in eqns (35) and (39) are transformed
into the constants 'Y'j, with their invariants preserved. Since 'Yij is symmetric it is of course
always possible to find a rotation [R] such that 'Y'i becomes diagonal. In the special case of
n =2 this happens, for example, when H(x) and UT(x) are symmetric and U!(x) is antisym­
metric.

In [1] these conditions are not fulfilled, nor do Olhoff and Rasmussen impose the condition
of orthogonality, in the sense of eqn (24), on their buckling modes. In other words, the problem
as posed in [1] differs from ours through the .additional requirement 'YT2 = 0 (in our notation),
which i$ matched by a relaxation of the requirement of orthogonality. In what follows we show
that their formulation is equivalent to ours in its full generality. and we derive sufficient
conditions of optimality for their case.

If UT and U~ are assumed to be functions of unit norm, as in [1], then they may in general be
represented by

UT =UI cos t/>T +U2sin t/>T
(55)

After inverting eqns (55) and substituting in eqn (39) we obtain the necessary condition

* n* +2 * n* + * n* - k2'YllHll 'Yl~"12 'YnU 22- ,

where 'YT I and 'Y~2 are linear combinations of 'Yii and where

x E l' (56a)

'V* = I [_ 'Yll + 'Y22 sin (..1..* _ ..1..*) _111- 122 sin (..1..* + ..1..*)
,12 cos(t/>1-t/>T) 2 '1'1 '1'2 2 '1'1 '1'2

+ 'Y12 cos (t/>T + t/>!)l
(56b)

The cross term 1T2 in eqns (56) can be made to vanish through a proper choice of the rotation
angles t/>'. With

(57)
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---;

a,

it follows that

when

Fig. 2. A-Surfaces and tangent cones near double eigenvalue singular point.

(58a)

(58b)

Equations (58) define a class of admissible rotations t/I, ~. The invariants of ['Yij) transform into

~I = 'YII + 'Y22 ='YT. + 'Y!2+ 2'YT2 sin 2~
(59)

which must both be positive for optimality. If eqn (58) is satisfied, this reduces to

(60)

or 'YT. > 0, 'Y!2 > 0, as was already conjectured in (1).
In Ref. [2)'and elsewhere it has been assumed tacitly that the A\ and A2 surfaces intersect in

a "curve". Equation (46) shows that this is not the case. In fact if AI and A2 are plotted in a
Cartesian subspace as functions of ell and el2, with eqn (46) representing the tangent surface at
the point being considered, then that surface turns out to be a double cone (see Fig. 2). The
base of the cone can readily be shown to be an ellipse, and the optimality condition eqn (47)
insures that the "horizontal" plane it. = 0 does not intersect the cone except at the apex. If the
A,-surface is convex it lies "inside" the lower cone, but the same restriction does not apply to
the Arsurface (see footnote).

4. EXAMPLES

In our first example we re-examine the two-degree of freedom system (see Fig. 3) of Ref.
[3). The problem is to find the spring stitfnesses ki which will make the fundamental frequency
55 Vol. 20. No. }-C
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I L,
uI· I UI ~----- J....t!

Fig. 3. Two degree of freedom system.

of vibration a minimum, subject to a cost constraint which is linearly related to the spring
constants.

With u, and U2 representing the displacements at the ends of the mass, and with 1= mi 2/12,
the system can readily be shown to be governed by

(61)

in which Ais proportional to the square of the frequency. The cost constraint and the physical
constraints are, respectively,

(62)

in which c. and C2 are assumed to be positive. Equation (61) has the two solutions

(63)

(2)=_1 {I}
U y6 1

and the "energy density vectors" are given by

(64)

with

Similarly to eqns (28) and (29) we have

(65a)

(65b)

(65c)
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clkl + C2k2 = 0

in which the last equation follows from eqn (62).
Two cases may arise:

(1) CI < 2C2' In this case the optimal solution is given by

k2 = 0; k2 > 0

] • C2 •
k =-' k = - - k < 0

I c
l
' I C, 2

225

(6Sd)

The eigenvalues are distinct, and the optimality condition eqn (7) is satisfied.
(2) C1 ;<!: 2C2' In this case the solution given above is not optimal since AI > 0, nor is there any

other optimal single eigenvalue solution. Optimality is reached with the double eigenvalue
solution

"'_4(42Cl)k' 2 <0"1"2 - ---- 1 =3 3 C2

inf Ai < 0 Vkit k2 E eqn (6Sd)
i s l.2

which satisfies eqns (4S) and (4Sa).
The next example concerns the fixed-fixed column under axial force N, which was used by

Olhoff and Rasmussen[1] to demonstrate the need for the introduction of multiple roots
because the single-root solution found in Ref. [8] turned out to be incorrect. The solution found
in [1] is numerical, and its accuracy has been challenged in [S], which is based on a different
numerical scheme. In the current investigation we develop an analytical closed solution to this
nonlinear problem.

The two coincident buckling modes Uj (i = 1, 2) are governed by

(£1 Uixx)xx +N Uixx = 0 x E [0, I]
(66)

Let us assume, as in [1], [S] and [8], that, for given shape of the cross section, the moment of
inertia I is proportional to the square of the cross section A. Let V represent the prescribed
volume, and let us introduce the non-dimensional variables e and 11 and parameter A through

V V
Am = T hm = T v(A)11m

(67)
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Then eqn (66) reduces to
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(1)2 U'n" + u'i = 0, ~ E [0, 1]

Uj(O) = u;(O) = Uj(1) = u;(1) = 0

,_ d
=df

(i=I,2)
(68)

In anticipation of the design variable 1)m being symmetric with respect to the center of the
column, and with the assumption that UI is symmetric and "2 is antisymmetric, eqn (39)
becomes

(69)

in conformity with [1], while the volume constraint reduces to

Equation (69) is automatically satisfied by letting

(70)

" sin 8
UI=--

CfV1)
(71)

which, when inserted into eqn (68), leads to

~ E [0,1].
(72)

By multiplying the first of these by cos 6 and the second by sin 6 and by taking the difference
we obtain

or, after integration,

6'- a- :;j" (73)

in which "a" is a constant of integration. Similarly, by multiplying the first of eqn (72) by sin 8
and the second by cos 8, by adding the two, and by making use of eqn (73) we obtain

whose first integral is

11)'2 2 a2 2
1)"+-----,+-= 02 1) 31) 31) , (74)

(7Sa)

(75b)

in which "b" is another constant of integration. These constants are determined from the
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boundary conditions governing Uj and ui (eqns 68) after integrating the equations

which follow from eqns (71) and (72). Eventually this leads to
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(76)

in which "Ill ii "1(0) ="1(1) and 80 ii 8(0). Note that the symmetry and anti-symmetry of UI and
U2, respectively, implyt 8(1) = 3'7T - 80,

The final form of eqns (75) and (73), respectively, is now

(77)

(78)

where

(79)

I 6' 228r = 3"10 SIO o·

For 80 :F ('7T/2) both p and r are positive, while the quadratic and linear terms in q(1) are
missing; this implies (see Fig. 4) that 1)1> 1)2> 0 and "I E ["12' "I.].

If E2 is defined by "I(EJ =1)2 it follows from eqn (77) that

(SO)

which can be expressed explicitly in terms of incomplete elliptic integrals of the first, second
and third kind. Similarly, again from eqn (77)

E(1) = E2- y3 f'l"l2 d1)
2 '12 yq

E(1) = E2+ ~3 I: ~~"1

EE [0, E:J (8Ia)

(8Ib)

tMore generally, 8(1) =(2n + 1)'11' - 8", n =0, 1. 2..... The choice of n = 1 is one of convenience. It can readily be
shown that the final result is independent of II.
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To determine the two remaining constants 110 and 60 we proceed as follows. We first note
that ~(111) = 0/2); from eqn (8Ib), with the substitution of eqn (80), this means that

! = y3 (I'lO+I'll) ti?l
2 2 'll 'll yq

(82)

in which the notation is self-explanatory and in which the second integral is a complete elliptic
integral. Moreover, since 6(0) =60 and 60/2) =3TT/2, integration of eqn (78) leads to

3TT y3 (I'lO I'll) dl1
T-60=Tl103sin260 'll + 'Il l1yq (83)

which again involves elliptic integrals of the first, second, and third kind. Equations (82) and
(83) are solved jointlyt to determine 110 and 60, Finally,* from the volume constraint eqn (70),

(84)

The results of these operations are given below:

A= 52.3565

60 = 1.24984

110 = 0.18427

111 =0.18435

112 =0.03121

ho= .1.33334

hi =1.33392

h2 = 0.22583

113.4= -0.OI523±0.02411i

and are incorporated in Fig. 4. Where applicable they are in close agreement with the numerical
results obtained in [1]. The constants CI and C2 can be computed on the basis of the normality
conditions eqns (24).

It may be of some interest to note that the single mode solution found in [8] is contained in
the general system presented here by setting 80 = TT/2. In that case a=0 and 6';& 0, i.e.
6ii11±TT/2 throughout (or U2=O). The quartic q reduces to q=11 3 (110-11), with 111=110'
112 =113 = 114 =0, while the integrals in eqns (SO), (81) and (82), and (84) become elementary.
Specifically, for ~ E [0, ~2 = 114] (and with the pattern repeated over the remainder of the
column),

and therefore, by setting 11 = 0 for ~ = 1/4, 110 =I/TTY3. Equation (84) reduces to

.! = 12 [('IO 11
3
/2 dl1 ]2,

A Jo y(l1o-l1)

tAlthough subroutines for all elliptic functions are available it was found more convenient to carry out the integrations
in eqns (82) and (83) directly.

nhe separation of eqn (84) from eqns (82) and (83) is accomplished through the introduction of the design variable 'II in
eqn (67). If. instead. h had been used. then 'II'" 6". and Awould require the solution of three simultaneous equations.
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Fig. 4. Optimal design h(~) for fixed-fixed column.
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4
Ito =\1'(,\) 710 =3' (86)

The difference between these values, which. represent point C in Fig. I, and the correct
values corresponding to point B, is minuscule. A qualitative explanation for this phenomenon
has been offered in [5] through the observation that shifting small amounts of material to the
hinges (f =1/2, 3/4) greatly strengthens the column against buckling into the antisymmetric
mode without materially reducing its resistance against buckling symmetrically. FIgUre 1
demonstrates this point graphically. Because of the discontinuity in the slope of the antisym·
metric mode in the hinged column it is easy to show, from eqn (5), that the curve A'BC' has a
vertical tangent at point C'. Since the tangent to the curve ABC at point Cis obviously horizontal, it
follows that the .correction introduced through the dual eigenvalue analysis is indeed small.t

The same process can be followed for the linear case in which I =CZA, which applies to
sandwich structures, idealized I-beams, etc. The procedure is similar, and with q reducing to a
cubic polynominal the solution is again in terms of elliptic integrals. As pointed out previously,
the single mode solution, similarly to the solution for the simply supported column [13], exhibits
curvatures of constant magnitude and hinges at the quarter points and is associated with ,\ = 48
and ho=1.5. For the double mode the calculations are not reproduced here because of their
similarity to the case treated above. Moreover, with ,\ =47.956 and Ito=1.4988 the. solution is
practically indistinguishable from the single mode solution.

5. ADDITIONAL AND CONCLUDING REMARKS

The purpose of the preceding sections has been to demonstrate, once again, the potential
error in proceeding on the basis of the assumption of a single eigenvalue, and to investigate the
nature of the singularity in the e~nt of a multiple eigenvalue. Sufficiency conditions have been
derived for the case of a double eigenvalue. In addition, previously established double
eigenvalue solutions have been reinvestigated in the light of these singularity conditions, and an
exact analytical solution has been obtained for the case of the optimal design of a fixed-fixed

tAn "approximate" method introduced in (2) leads to results that are substantially in error. The method. which is based
on replacing curves ABC and A'BC' by second order parabolas, fails to take the vertical tangency at point C' into account.
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column, for which numerical solutions (exhibiting slight discrepancies) had previously been
found in [1] and [5).

Additional warning signals may sometimes be in order. Consider the case of a circular ring
of radius R under constant external pressure, which is to be designed optimally against
buckling. For the sake of simplicity, and without significantly abandoning generality, it is
assumed that the cross· section of the ring is of the sandwich type, with the moment of inertia I
being proportional to the design variable h.

In nondimensional form the problem is governed by the quadratic form

(87)

in which u represents the radial displacement and a prime (as in u') designates differentiation
with respect to the angle q,. For the prismatic design h(q,) = ho= t the normalized buckling
mode and lowest eigenvalue are given, respectively, by

(88)

where q,o is an arbitrary phase angle.
Assuming single mode optimality and setting q,o:: 0 we obtain, in line with eqn (9), the

constant curvature solution [2)

(89)

which exhibits hinges at the four quarter points and is associated with AI:: 3.653. However, the
"optimal" ring has now become a mechanism, which actually buckles under zero-pressure
(A2 :: 0). Has the value of the second eigenvalue again been reduced below that of the first
eigenvalue, as was the case in the previous examples?

Clearly this has not happened here. Unlike the examples considered previously the present
example displays a mechanism which "buckles" into a mode which is similar to the buckling
mode of the prismatic ring, but rotated through 45°. In other words, the optimal design process,
which was based (arbitrarily) on the assumption of q,o =0 has weakened the resistance of the
ring against buckling into the same type of mode, but with a phase angle of q,o =1T14.

Specifically, from eqns (5) and (88) (for arbitrary q,o),

which. by invoking the constant volume condition eqn (8), reduces to

(90)

Since q,o is arbitrary we may minimize (or maximize) Alo by setting its derivative with respect to
q,o equal to zero. This leads to

S
tan4q,0=7:

(91)

s· f" Ii sin 4q, dq, C =f" Ii cos q, dq"
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(92)

In other words, no modification of the prismatic design can lead to an increase of the smallest
eigenvalue. Since for the sandwich cross section Q2 is concave (see the equality in eqn 14) it
follows, perhaps not unexpectedly, that the prismatic design of the ring is optimal (without
being stationary). It may be conjectured that the same is true for other types of cross sections,
but proof appears to be lacking.
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APPENDIX
In the Appendix we show that it is always possible to select the functions VI(X), Vix) in such a way that hl(x) and hJ<x)

are mutually orthogonal in the sense of eqn (43). In fact let VT and V! be two functions satisfying the orthonormality
condition eqn (24). Then. as pointed out previously. the transformation

leads to two functions which also satisfy eqn (24) for any value of 8. Moreover,

nn- n"" == (nTI- nB cos 2/1 + IDT" sin 28

1nl" == -(n,,- n!"lsin 28 + IDT"cos 28

in which aTi == :h QII( UW'h).

Equation (43) is satisfied. i.e.

(AI)

(A2)

(A3)

provided J(i'iT,- n!l)n," dx
tan48=4 • .L{(flT,-n!")"-4flT~ldx

(A4)

Note that /I is indefinite if both numerator and denominator vanish. Otherwise eqn (M) has four solutions differing by
multiples of 1f/4. with a rotation through 1f/4 representing an interchange between nn- n"" and 20,". while nn +n""
remains invariant.


